Thursday, February 20, 2014
0!
Most factorials are easy to understand and to find the solution to, except the factorial of a certain number. This number is 0. It is weird that every other number above zero is basically that number multiplied by all numbers below it towards one. However, 0 x 0 should be zero for even if it is multiplied by one, it is still zero. However, through this article, one can basically understand why mathematicians had defined 0! As 1. One huge reason is due to permutations. A set with no values should be arranged in only one way. Also, the formulas for permutations and combinations need the value of zero factorial to be one so that it is consistent with the equations that are derived. It is basically made up so that math equations stay true. One can learn more from this article: http://statistics.about.com/od/ProbHelpandTutorials/a/Why-Does-Zero-Factorial-Equal-One.htm
Subscribe to:
Post Comments (Atom)
That is interesting that 0! is 1 in order to make all the math equations stay true. It should have been 0 instead of 1. This is quite strange and makes me wonder if any one was able to just change math when it didn't work. Since 0! was changed does that we are allowed to change anything we want to make math stay true.
ReplyDelete